%qtconsole
The following plot shows that two different signal frequencies (i.e., $f=0$, $f=f_s$) can generate the exact same samples.
n = arange(5)
fs = 0.25
t = linspace(0,n.max()/fs,200)
fig,ax = subplots()
ax.stem(n/fs,cos(2*pi*n),basefmt='',label='samples')
ax.plot(t,cos(2*pi*fs*t),'--g',label='f=fs')
ax.plot(t,t*0+1,'r--',label='f=0')
ax.set_ylim(top=1.5,bottom=-2.5)
ax.set_xlim(left=-.5,right=t.max()*1.1)
ax.grid()
ax.set_xlabel('time',fontsize=18)
ax.set_ylabel('Amplitude',fontsize=18)
ax.set_title('Two signals have identical samples',fontsize=18)
ax.legend(loc=0)
<matplotlib.legend.Legend at 0x894e170>
This is the aliasing problem and it is a fact of sampling. In fact, its implications are even more problematic.
from __future__ import division
from matplotlib.patches import FancyArrow
import mpl_toolkits.mplot3d.art3d as art3d
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
import matplotlib.gridspec as gridspec
def dftmatrix(Nfft=32,N=None):
'construct DFT matrix'
k= np.arange(Nfft)
if N is None: N = Nfft
n = arange(N)
U = matrix(exp(1j* 2*pi/Nfft *k*n[:,None])) # use numpy broadcasting to create matrix
return U/sqrt(Nfft)
def facet_filled(x,alpha=0.5,color='b'):
'construct 3D facet from adjacent points filled to zero'
a,b=x
a0= a*array([1,1,0])
b0= b*array([1,1,0])
ve = vstack([a,a0,b0,b]) # create closed polygon facet
poly = Poly3DCollection([ve]) # create facet
poly.set_alpha(alpha)
poly.set_color(color)
return poly
def drawDFTView(X,ax=None,fig=None):
'above code as a function. Draws 3D diagram given DFT matrix'
a=2*pi/len(X)*arange(len(X))
d=vstack([cos(a),sin(a),array(abs(X)).flatten()]).T
if ax is None and fig is None:
fig = plt.figure()
fig.set_size_inches(6,6)
if ax is None: # add ax to existing figure
ax = fig.add_subplot(1, 1, 1, projection='3d')
ax.axis([-1,1,-1,1])
ax.set_zlim([0,d[:,2].max()])
ax.set_aspect(1)
ax.view_init(azim=-30)
a=FancyArrow(0,0,1,0,width=0.02,length_includes_head=True)
ax.add_patch(a)
b=FancyArrow(0,0,0,1,width=0.02,length_includes_head=True)
ax.add_patch(b)
art3d.patch_2d_to_3d(a)
art3d.patch_2d_to_3d(b)
ax.axis('off')
sl=[slice(i,i+2) for i in range(d.shape[0]-2)] # collect neighboring points
for s in sl:
poly=facet_filled(d[s,:])
ax.add_collection3d(poly)
# edge polygons
ax.add_collection3d(facet_filled(d[[-1,0],:]))
ax.add_collection3d(facet_filled(d[[-2,-1],:]))
from scipy.signal import chirp
f0 = 0 # start frequency
t1 = 2 # end-time
f1 = 10 # frequency at end-time
fs = 40 # sample rate
t = arange(0,t1,1/fs)
x = chirp(t,f0,t1,f1)
#drawDFTView(fft.fft(x,512),ax=None,fig=None)
def dftmatrix(Nfft=32,N=None):
'construct DFT matrix'
k= np.arange(Nfft)
if N is None: N = Nfft
n = arange(N)
U = matrix(exp(1j* 2*pi/Nfft *k*n[:,None])) # use numpy broadcasting to create matrix
return U/sqrt(Nfft)
plot(U[:,1].real)
U = dftmatrix(128*2,32)
drawDFTView(U.H*(U[:,0]+U[:,100]).real)
and for sampled frequency,
$$ f_k = \frac{f_s}{N} k $$$$ \delta f = f_s/N$$$$ \Omega_{k+N} = \Omega_k$$Nf = 64
fs = 64 # delta_f = 1 Hz
f = 10
t = arange(0,1,1/fs)
deltaf = 1/2.
fig,ax = subplots(2,1,sharex=True,sharey=True)
x=cos(2*pi*f*t) + cos(2*pi*(f+2)*t)
X = fft.fft(x,Nf)
ax[0].plot(linspace(0,fs,len(X)),abs(X),'-o')
ax[0].set_title(r'$\delta f = 2$',fontsize=18)
ax[0].set_ylabel(r'$|X(k)|$',fontsize=18)
ax[0].grid()
x=cos(2*pi*f*t) + cos(2*pi*(f+deltaf)*t)
X = fft.fft(x,Nf)
ax[1].plot(linspace(0,fs,len(X)),abs(X),'-o')
ax[1].set_title(r'$\delta f = 1/2$',fontsize=18)
ax[1].set_ylabel(r'$|X(k)|$',fontsize=18)
ax[1].set_xlabel('Frequency (Hz)',fontsize=18)
ax[1].set_xlim(xmax = fs/2)
ax[1].grid()
Nf = 64*2
fig,ax = subplots(2,1,sharex=True,sharey=True)
fig.set_size_inches((6,6))
X = fft.fft(x,Nf)
ax[0].plot(linspace(0,fs,len(X)),abs(X),'-o',ms=3.)
ax[0].set_title(r'$N=%d$'%Nf,fontsize=18)
ax[0].set_ylabel(r'$|X(k)|$',fontsize=18)
ax[0].grid()
Nf = 64*4
X = fft.fft(x,Nf)
ax[1].plot(linspace(0,fs,len(X)),abs(X),'-o',ms=3.)
ax[1].set_title(r'$N=%d$'%Nf,fontsize=18)
ax[1].set_ylabel(r'$|X(k)|$',fontsize=18)
ax[1].set_xlabel('Frequency (Hz)',fontsize=18)
ax[1].set_xlim(xmax = fs/2)
ax[1].grid()
t = arange(0,2,1/fs)
x=cos(2*pi*f*t) + cos(2*pi*(f+deltaf)*t)
Nf = 64*2
fig,ax = subplots(2,1,sharex=True,sharey=True)
fig.set_size_inches((6,6))
X = fft.fft(x,Nf)
ax[0].plot(linspace(0,fs,len(X)),abs(X),'-o',ms=3.)
ax[0].set_title(r'$N=%d$'%Nf,fontsize=18)
ax[0].set_ylabel(r'$|X(k)|$',fontsize=18)
ax[0].grid()
Nf = 64*8
X = fft.fft(x,Nf)
ax[1].plot(linspace(0,fs,len(X)),abs(X),'-o',ms=3.)
ax[1].set_title(r'$N=%d$'%Nf,fontsize=18)
ax[1].set_ylabel(r'$|X(k)|$',fontsize=18)
ax[1].set_xlabel('Frequency (Hz)',fontsize=18)
ax[1].set_xlim(xmax = fs/2)
ax[1].grid()
#t = arange(0,10,1/fs).reshape(10,-1)
#x=cos(2*pi*f*t) + cos(2*pi*(f+deltaf)*t)
In this section, we considered the Discrete Fourier Transform (DFT) using a matrix/vector approach. We used this approach to develop an intuitive visual vocabulary for the DFT with respect to high/low frequency and real-valued signals. We recognized that zero-padding an input signal is the same as analyzing more discrete frequencies in the transform domain.
As usual, the corresponding IPython notebook for this post is available for download here.
Comments and corrections welcome!